2,301 research outputs found

    Quantum Fluctuations of a Single Trapped Atom: Transient Rabi Oscillations and Magnetic Bistability

    Full text link
    Isolation of a single atomic particle and monitoring its resonance fluorescence is a powerful tool for studies of quantum effects in radiation-matter interaction. Here we present observations of quantum dynamics of an isolated neutral atom stored in a magneto-optical trap. By means of photon correlations in the atom's resonance fluorescence we demonstrate the well-known phenomenon of photon antibunching which corresponds to transient Rabi oscillations in the atom. Through polarization-sensitive photon correlations we show a novel example of resolved quantum fluctuations: spontaneous magnetic orientation of an atom. These effects can only be observed with a single atom.Comment: LaTeX 2e, 14 pages, 7 Postscript figure

    Negative quantum capacitance in graphene nanoribbons with lateral gates

    Full text link
    We present numerical simulations of the capacitive coupling between graphene nanoribbons of various widths and gate electrodes in different configurations. We compare the influence of lateral metallic or graphene side gate structures on the overall back gate capacitive coupling. Most interestingly, we find a complex interplay between quantum capacitance effects in the graphene nanoribbon and the lateral graphene side gates, giving rise to an unconventional negative quantum capacitance. The emerging non-linear capacitive couplings are investigated in detail. The experimentally relevant relative lever arm, the ratio between the coupling of the different gate structures, is discussed.Comment: 8 pages, 6 figure

    Dewetting of thin films on heterogeneous substrates: Pinning vs. coarsening

    Full text link
    We study a model for a thin liquid film dewetting from a periodic heterogeneous substrate (template). The amplitude and periodicity of a striped template heterogeneity necessary to obtain a stable periodic stripe pattern, i.e. pinning, are computed. This requires a stabilization of the longitudinal and transversal modes driving the typical coarsening dynamics during dewetting of a thin film on a homogeneous substrate. If the heterogeneity has a larger spatial period than the critical dewetting mode, weak heterogeneities are sufficient for pinning. A large region of coexistence between coarsening dynamics and pinning is found.Comment: 4 pages, 4 figure

    Dissociative recombination and electron-impact de-excitation in CH photon emission under ITER divertor-relevant plasma conditions

    Get PDF
    For understanding carbon erosion and redeposition in nuclear fusion devices, it is important to understand the transport and chemical break-up of hydrocarbon molecules in edge plasmas, often diagnosed by emission of the CH A^2\Delta - X^2\Pi Ger\"o band around 430 nm. The CH A-level can be excited either by electron-impact or by dissociative recombination (D.R.) of hydrocarbon ions. These processes were included in the 3D Monte Carlo impurity transport code ERO. A series of methane injection experiments was performed in the high-density, low-temperature linear plasma generator Pilot-PSI, and simulated emission intensity profiles were benchmarked against these experiments. It was confirmed that excitation by D.R. dominates at T_e < 1.5 eV. The results indicate that the fraction of D.R. events that lead to a CH radical in the A-level and consequent photon emission is at least 10%. Additionally, quenching of the excited CH radicals by electron impact de-excitation was included in the modeling. This quenching is shown to be significant: depending on the electron density, it reduces the effective CH emission by a factor of 1.4 at n_e=1.3*10^20 m^-3, to 2.8 at n_e=9.3*10^20 m^-3. Its inclusion significantly improved agreement between experiment and modeling

    Fragmentation of exotic oxygen isotopes

    Get PDF
    Abrasion-ablation models and the empirical EPAX parametrization of projectile fragmentation are described. Their cross section predictions are compared to recent data of the fragmentation of secondary beams of neutron-rich, unstable 19,20,21O isotopes at beam energies near 600 MeV/nucleon as well as data for stable 17,18O beams

    Dynamics of open quantum systems

    Get PDF
    The coupling between the states of a system and the continuum into which it is embedded, induces correlations that are especially large in the short time scale. These correlations cannot be calculated by using a statistical or perturbational approach. They are, however, involved in an approach describing structure and reaction aspects in a unified manner. Such a model is the SMEC (shell model embedded in the continuum). Some characteristic results obtained from SMEC as well as some aspects of the correlations induced by the coupling to the continuum are discussed.Comment: 16 pages, 5 figure

    Coulomb excitation of 68^{68}Ni at safe energies

    Get PDF
    The B(E2;0+2+)B(E2;0^+\to2^+) value in 68^{68}Ni has been measured using Coulomb excitation at safe energies. The 68^{68}Ni radioactive beam was post-accelerated at the ISOLDE facility (CERN) to 2.9 MeV/u. The emitted γ\gamma rays were detected by the MINIBALL detector array. A kinematic particle reconstruction was performed in order to increase the measured c.m. angular range of the excitation cross section. The obtained value of 2.81.0+1.2^{+1.2}_{-1.0} 102^2 e2^2fm4^4 is in good agreement with the value measured at intermediate energy Coulomb excitation, confirming the low 0+2+0^+\to2^+ transition probability.Comment: 4 pages, 5 figure

    Templeting of Thin Films Induced by Dewetting on Patterned Surfaces

    Full text link
    The instability, dynamics and morphological transitions of patterns in thin liquid films on periodic striped surfaces (consisting of alternating less and more wettable stripes) are investigated based on 3-D nonlinear simulations that account for the inter-site hydrodynamic and surface-energetic interactions. The film breakup is suppressed on some potentially destabilizing nonwettable sites when their spacing is below a characteristic lengthscale of the instability, the upper bound for which is close to the spinodal lengthscale. The thin film pattern replicates the substrate surface energy pattern closely only when, (a) the periodicity of substrate pattern matches closely with the characteristic lengthscale, and (b) the stripe-width is within a range bounded by a lower critical length, below which no heterogeneous rupture occurs, and an upper transition length above which complex morphological features bearing little resemblance to the substrate pattern are formed.Comment: 5 pages TeX (REVTeX 4), other comments: submitted to Phys. Rev.Let
    corecore